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TRANSPORT PROCESSES IN A REACTING BOUNDARY LAYER
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An approximate calculation has been made for the boundary layer of a compressible gas in a laminar flow
over a semi-infinite porous plate reacting with an injected substance in a homogeneous reaction at an in-
finite rate. The possibility of applying the solutions obtained to a turbulent boundary layer is also exam-
ined,

Heat and mass transfer processes in a boundary layer in the presence of chemical reactions are of great practical
interest, There are many examples of apparatus and equipment where use is made of subliming surfaces, and also sys-
tems with gas injected through a porous wall, in which the sublimed or injected substances may reach the boundary lay-
er and react with it,

In the analytical research [1, 2, 5, 9, 10] dealing with this matter, attention has been given in the main to flow
over a body, through the porous walls of which coolant is injected according to the law v, ~x¥/2 or v,~x 12 to
react in the laminar boundary layer with the incoming stream. A similar problem is examined in [8] for the case of
uniform injection vy, = const of a foreign substance along the length of a porous plate. There it is assumed that the
plate is immersed in an incompressible gas with Pr = Pry = 1,

In the present paper an approximate analytical investigation is made of the heat and mass transfer processes in a
laminar boundary layer into which a substance is uniformly v,, = const injected through a porous semi-infinite plate to
react with the steady high-speed gas flow. The solution is given for the case of an infinite reaction rate v; at a certain
temperature T« on some surface y = y (x), which is a surface of discontinuity in the boundary layer,

It is known that if v, >» V4. where vqis the diffusion rate, then the reaction occurs in a well-defined zone (reac-
tion front) [1, 2] within the reacting boundary layer.

The thermal and diffusion Prandtl numbers (Pr, Pry) are assumed to be variable or constant and not equal to unity,
i.e., Pr=1=const, Pry * 1 = const, Pr = Pr,. It is assumed that the effective physical coefficients of the gas mix-
ture are uniform throughout the boundary layer, that the mean molecular weight of the mixture does not differ much
from the molecular weight of the components, and that the rate of arrival of oxidizer (usually oxygen) from the external
flow is somewhat greater than the stoichiometric value, as a result of which the progress of the reaction depends only on
diffusion of the injected gas. '

Under the above assumptions (thermal diffusion not taken into account), the equations of the laminat boundary
layer for reacting gas mixtures may be written in the form
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where C; = py/p, Cy, Cj are, respectively, the concentrations by weight of the fuel gas, the reaction products, and the
inert component; h is the enthalpy h = cpT.

We assume a linear dependence of viscosity on temperature gt = 1 T/T, where g and T, are constants, the dif-
fusion coefficient D = D(T), the thermal conductivity A = A(T), and Cp = comst,

We transform (1)-(4) to the Crocco variable [3]u = u(x, y) X = X, After elimination of v, Egs., (2), (3), and (4)
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take the form, respectively:
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where T is the shear stress, At the wall, in the presence of blowing [4],

T=1, + (pU), U
These equations are simplified appreciably if we assume
on . ac

s = 0- 9
ox Ox ®

It has been shown [1, 4] that this assumption is admissible for the conditions examined, and results in h and C becoming
functions of the single variable u, Moreover, since p = ji; (T) = jip (1) and 7 = *« when x = 0, Eq. (6) takes the form
4]

KK” + 2np4p9 = 0, 10
where ) = Ullw, Py = /0w, Po = P/tho, K =2 ]/x/pwpw u?; 7. (The primes denote differentiation with respect to

7). It should be noted that K is a function of the blowing parameter. With (9) taken into account, the equations of
energy (7) and diffusion (8) may be transformed to
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with the boundary conditions
h="Hhy, K=0when n=1; (19
KI =KII ’ Cl = O, T = M h[ = h”; (14)
ki —hi = Pr QCi when 1 = ";; (15)
rm
h =hw’ K = 2(90)10 Vx/pwp‘m;i »
(pv), = const = (pv),,C; (0) — C; (0) 7,/Pr,, when 7 = 0. (16)

Equations (14) and (15), which are written on the basis of studies of laminar motion in a boundary layer with a
discontinuity surface [5, 6], follow from the laws of conservation of momentum (Kj = Kpp) and energy. Relation (15)
has been introduced to determine the location of the reaction front in the boundary layer. The two successive conditions
in (14) determine the uniqueness of the solution,

The expression for the mass flow of component i (j;) passing through some surface parallel to the wall is

fi=PU:CiPU‘“PDi‘Q‘C‘L:CiPU“ - 9C;
Oy

(1N
Pr, Ou
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The boundary condition {pv),, = const in (16) was obtained for an injected gas on the basis of (17). The solution of
the nonlinear momentum equation (10) in regions I and II, taking into account (13)-(L16), may be obtained by the meth-
od of numerical integration. If the case up = const or j1opg = 1 is to be examined, Eq. (10) is put in the form

KK+ 2v=0, (18)

which is independent of the thermal and diffusion problems, This second-order ordinary differential equation is equiva-
lent to the Blasius equation and may be obtained directly from it by simple transformations [7].

To compute the functions k (n), we can use tables prepared for the Blasius problem [11]. An approximate expression
for k () without allowance for blowing has the form [7]

K(v) = va/l—'—"lz ’
where K =¢; V' Re, =0.664.

When n ~> 1, we obtain from (18) the approximate equation KK" + 2 = 0, which may be integrated in finite form

[4].

We solve the energy equation (11) for regions IT and 1 with the boundary conditions (13)-(15) and (15), (16), re-
spectively, and the diffusion equation (12) in region I with boundary conditions (14)-(16).

For region I

, K ()
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From repeated integration we obtain
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is a constant of integration; we have S(0, n,) and R(0, 7,) from (20) and (21) at a value of the limit of integration
=1,
Using (22), we put (19) in the form

h' = h —uz R ’ l) + [h hw + uiR(O’ ”1»)] S (09 1!)/8 (Ov fl) (23)

Similarly, we obtain the enthalpy distribution in region II:

h = h:?: —uiR(YI:S: ’ Yl) + [h/ _h.u + UZDR(O, 7‘)] S(O, 11)'/8 (0! 7[:5:)’ (24)
where
r: K (%) dK
St 0= | Pres [ j Pr—1) 5 ] d, (25)
L K (ne)
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K (7)

‘ 7
Ry, m) = j { Prexp [ 5 (Pr—1) EKKJ {Xj exp [ y (I—Pr) %‘L] d'q} dw, (26)
K (1)

Tie K (n4) Tin

We find functions S(n,, 1) and R(n,, 1) from (25) and (26), taking the upper limit of integration as = 1.

We obtain the concentration distribution in the boundary layer from the solution of (12) and (14)-(16):

Cl - u°° Ewsm (71:5: 3 ”Q)[1+ u°° Ewsm (07 71:&:)]—1’ (27)
where &, = (pv),/
‘ .:A K (%)
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K (y)
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S0, M) = Pr exp (Pr,,— 1) —K—
K (0)

From (13), using (23) and (27), we obtain a relation for determining the position of the reaction front:

W2 R (nsy 1) A hoo — By K (1) .
Sz, 1) €Xp (l_apr) TJ .
K (0)
_ul RO, 1) F by —hy, o T ~ K () i« ) .
| S0, e} °°AJ P [ j (1—Pr) 7?] d =
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K ({3 )
= QU &, exp[ ) (Pr,, ~Pr)——}} 4 uaky S, (0, 7)1,
K (0)

If Pr and Pryy, are constant, functions S(ny, mp), Spy{(ny, 7Mg) and R(ny. ng). where n;, n, are the limits of integra-
tion, may be written as

e
S(ny, M) =Prl, (1, 1) =Pr § R ()R ()17 d

7‘1

Mz
Sm (1, Ma) = Pr 1. (11, v),) = prmj [k (‘f;-z)/k(‘/h)]prm_i d,

%
T

R(ny, 1) =PrJ (s, 1) = Pr ﬂ [ () ()P ( [k(ne)/k(m)]“prd'fi} dn.

1 ".1

Functions I and J have been tabulated [4, 7] for various fixed values of the Prandtl number and for shear stress dis-
tributions according to the Blasius law. In the case when Pr = const and Pr,, = const, (23) and (24) transform into the
Crocco formulas [4]

b= hy— 12 Prd (0, 1) 4 [y — hy + 2 PrJ (0, 7)) 02 (29)
10, n,)

By — 2 Prd (e, 1)+ Uho—hy + 02, P (1 1”%%-% ’ @0
n:i:,

and the concentration distribution is given by the relation

: —1
[ [ 1,00, m)} , (31

Prolle &
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while condition (28) takes the form

w2 PrJ (0, ns) +h.—h W Prd(Mu, 1) +he—hy

ul 1(0, M) — Pri(0, 72 + - Pri(me, 1)
k() ]"P" _ k () ] Prm—Pr Prou.l . 32
S o B ol SR -

Considerable mathematical simplification is possible when Pr = Pry; =1 orv = a = D. From (29)-(31) we obtain,
respectively,

H—Hy _ n H—H. _ 1= » _tUelullx—1)

= y = — = >

H.—H, N Ho —H, 1— s ! -t Egnis

i.e., the distribution of total enthalpy H=c T + u?/2 and concentration, determined by integration in closed form, de-
pends linearly on the flow velocity, which agrees with the data of 1, 5]. Condition (31) for determining the location of
the reaction front is transformed to an algebraic equation of third degree in n4:

2
202, Q8 —1) + 7P i (%‘i—QumEi-i—QEw) + n(u—2~ — hyt ho — QEy )+<hw—-h$) =0, @9

where the root 74 is so chosen that 0 < 11, < 1,
The solution obtained allows us to calculate the heat flux gy = (H, = Hy,) cc/Cp from the gas to the plate surface.

The heat transfer coefficient is

<x 9_’1) (Hy—H,) = A (_’i ( ) /pum(f‘l _H,). (34
dy |, d

1k

2

From (22) and (34), taking account of the relation for 1, = mepmu /x and for the Reynolds number

w
Re, = 0w UeX/1s , We have

282 20 [h +2R(0, 1) = }
&= DL # y Ng) — — w .
H.—H, S, 7.)2VRe, L ~ ) (35)

Having determined the Stanton number Sty and the recovery enthalpy b according to [4], i.e.,

" S0, 1:)2VRe,  S(0, 7)) 2
h, =h, + 2R(0, 1) — ;’ (37)
we transform (35) to
%= C,pw e St (h, —h,)/(H.—H,), (3%)

where the values S(0, na) =s and 2R(0, 5,) = r may be regarded, respectively, as the coefficients of the Reynolds
analogy and recovery enthalpy.,

When a liquid filters through the porous wall and vaporizes at the surface in such a way that no liquid film of cool-
ant is formed, the corresponding heat flux will be Ay, = = (pVIyl.

Having determined the heat transfer at the porous wall with material injected according to the relation Qwg =
=2 (pv),l. wecan calculate the total heat flux qy = Gwy * Gy, * Gy OF

a
Gp=— (H, _Hw) "“(f‘v)w(l’ + ).
Cp
We shall now consider a turbulent boundary layer in relation to the conditions of the present problem. Taking ac-
count of (10), we can write the equations of momentum, energy, and diffusion in the Crocco variables for the averaged

*Heat transfer due to radiation is not taken into account,



steady state, respectively, in the form [4]

9 [P“(“ 4.‘5@] + 6'_12 -0, (39)
Ox T ou
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In (39)-(43) the bar denotes averaging, and the primes in (42) and (43) the fluctuating component,

In the case examined the momentum equation (39) does notgive a solution. However, integration of the equations
of energy (40) and diffusion (41) with boundary conditions (13)-(16), transformed for turbulent flow, may be carried out
in the same way as for the laminar boundary layer, It is evident that integration results in analytical expressions for
h1C1 and 7, that are compleé:ely analogous to those obtained for the laminar boundary layer (23)~(28), but written for
averaged values and with Pr and Pr instead of Pr and Pry,. Therefore, relations (36)—(38), which determine

I ¢ u?
St = PR hy=h, +r 5 = CpPa Ue St (h, —h,)(H. —H,),
will also be valid for the turbulent boundary layer. Thus, to calculate the heat transfer coefficienta (or qy;), it is nec-
essary to determine the coefficients r, s, and Cf A method of calculating these coefficients for the case of a nonreact-
ing turbulent boundary layer was given in [4], :

Notation

x—coordinate along the plate; y—coordinate normal to the plate; u, v—{flow velocity components along x and y,
respectively; p, T, A, a, y—respectively, density of mixture, absolute temperature, thermal conductivity, thermal dif-
fusivity, and viscosity; cp—specific heat at constant pressure; D—diffusion coefficient; c,—specific heat at constant
pressure; D—diffusion coefficient; R—universal gas constant; Pr = Bep /A—thermal, and Pr,, = y/p D—diffusion Prandtl
mumber; &, €), sp—turbulent viscosity, thermal conductivity, and diffusion, respectively (see Eq. (43)); P1°, Pr
—compound Prandtl numbers, thermal and diffusion, respectively (see Eq. (42)); Q—heat of reaction; L—heat of vapor—
ization; [—~heat emltted or received by the wall; cf—local coefficient of surface friction cf = 27w /P collsg; hy = H,,
CPT Heo= cpT + u /2: Hs = cp x + u*/2 Subscripts: «-conditions at outer edge of boundary layer; w— condltlons
on surface; x—value at a given coordinate; *—conditions in reaction zone; I—values between reaction front and plate;

11 —above reaction front in the boundary layer,
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